
Developing g-2
Code on your Mac

g-2

×

μ

Adam L. Lyon
FNAL/SCD

January 2015
Updated Feb 2016

GM2-doc-2459

1

UPDATES TO THIS DOCUMENT

Things have changed

Upgrading to El Capitan (Don’t). If you
upgrade to El Capitan (OSX 10.11), you
will not be able build nor run g-2 code
on your Mac. Apple has introduced a
new security feature called System Integ-
rity Protection (see
https://support.apple.com/en-us/HT2048
99 for more information). This feature ru-
ins our “ups” style of running. You can
turn this feature off system wide, but it is
not clear if this option will exist in future
OS versions. Furthermore, at this point
the art code has not been updated to El
Capitan.

You can either stay on Yosemite (OSX
10.10) or upgrade to El Capitan and use
a Linux virtual machine or Docker con-

tainer on your Mac. Instructions for the latter will appear in a future document.

Using Xcode 7.2 and higher. If you upgrade your Xcode to version 7.2 or higher,
you will need to change an internal default setting to allow Xcode to inherit the calling
environment (this allows Xcode to see environment variables from your session - nec-
essary for the instructions in this document).

You need to run the following command just once after upgrading your Xcode...

defaults write com.apple.dt.Xcode \  
 UseSanitizedBuildSystemEnvironment -bool NO

 
Once that command has been run, Xcode will behave properly. Note that for some
reason the newer versions of Xcode no longer understand Kerberos, so you will not
be able to push or pull with git and Redmine from within Xcode. You can use the com-
mand line or a nice free application called SourceTree (
https://www.sourcetreeapp.com/) to replace this functionality.

New CVMFS /cvmfs/gm2.opensciencegrid.org. Muon g-2 has switched to a differ-
ent CVMFS server. This document has been updated accordingly (replace
/cvmfs/oasis.opensciencegrid.org with /cvmfs/gm2.opensciencegrid.org).

https://support.apple.com/en-us/HT204899
https://support.apple.com/en-us/HT204899
https://support.apple.com/en-us/HT204899
https://support.apple.com/en-us/HT204899
https://www.sourcetreeapp.com
https://www.sourcetreeapp.com

2

OVERVIEW

3

WELCOME!

Apple provides a professional set of development tools for free. You should use them!

Since our Muon g-2 code builds on a
Mac, you can use your Mac laptop or
desktop for development. Apple pro-
vides a professional set of tools, Xcode
and Instruments, for your code develop-
ment use.

Note: It is important to remember that
running code on your Mac is still consid-
ered experimental. All long runs and
code producing official results should
run on the Grid under Linux.

For general information about Muon g-2
code and development, you should see
the manual at GM2-db-1825 or the
gm2swtools product in the release.

There are several benefits that Xcode
and Instruments give you over coding
with text editors like Emacs and vi,

• Xcode is a very convenient code editor
with advanced navigating and editing
capabilities

• You can click on a #include directive
and jump to the header file

• You can click on a class or object
name and jump to its definition.

• Xcode understands projects: you can
view all of the source code that goes
together to make a build

• Easily search (and replace) text in a
file or the entire project

• Code build errors are displayed in the
source code at the problematic line

• Debugging with an IDE (not in the ter-
minal)

• Built in git management and version
comparisons

• Easily profile your code for speed,
memory allocation, and memory leaks

Xcode is a very capable integrated de-
velopment environment (IDE) and we’ll
scratch the surface here.

Note that while we are developing on
the Mac, we are not using the Apple
compiler nor Apple’s framework environ-
ment. Limitations will result.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

4

The WWDC videos are useful to learn Xcode and Instruments

Xcode comes with extensive documenta-
tion. Some go very deep and some are
very terse. I have found that several Ap-
ple WWDC (World-Wide Developer’s
Conference) videos give a lot of good in-
formation.

To view the videos, you will need to use
Safari and you will need an Apple Devel-
oper’s account (it’s free). Here is a list of
videos that I have found useful.

Many of the videos talk about Mac spe-
cific functions that we do not use, but
there’s enough general information to
make them useful.

Xcode is a big complicated program!
Have fun trying stuff and learning it.

WWDC 2012 (link):

• Working Efficiently with Xcode. Nice explanations of various ways of using the pro-
gram (single window, single window with tabs, multiple windows)

• Debugging in Xcode. Useful demonstration of the Xcode debugger

• Advanced Debugging with LLDB. Advanced tips for using the Apple debugger
(mostly works with our code)

• Learning Instruments. A somewhat useful tour of Instruments

WWDC 2013 (link):

• Core Xcode. Lots of useful tips for using Xcode, including a section on Xcode funda-
mentals

WWDC 2014 (link):

• Improving your App with Instruments. A good tour of Instruments

Tutorials:

A very nice tutorial of Xcode tricks is at
http://www.raywenderlich.com/72021/supercharging-xcode-efficiency

RESOURCES FOR LEARNING MORE

https://developer.apple.com/videos/wwdc/2012/
https://developer.apple.com/videos/wwdc/2012/
https://developer.apple.com/videos/wwdc/2013/
https://developer.apple.com/videos/wwdc/2013/
https://developer.apple.com/videos/wwdc/2014/
https://developer.apple.com/videos/wwdc/2014/
http://www.raywenderlich.com/72021/supercharging-xcode-efficiency
http://www.raywenderlich.com/72021/supercharging-xcode-efficiency

Setting up your Mac

•Installing CVMFS

•Installing Xcode 1

6

1.1 HOW TO INSTALL CVMFS

CVMFS makes distributing executables and libraries very easy.

We distribute our executables and librar-
ies via the CERN Virtual File System
(CVMFS). It allows you to “subscribe” to
published directories. You will get up-
dates automatically as they are pushed
out from Fermilab. We use the Open Sci-
ence Grid Gm2 CVMFS service, supply-
ing CVMFS for several experiments.
You may learn more about CVMFS on
the web.

If you have CVMFS already. Check if
CVMFS is running with,

ps -ef | grep cvmfs | grep -v grep

 
If you get no response, then you are not
running CVMFS. If you do get a re-
sponse, then reboot your Mac now to
start without CVMFS running.

If you have a /cvmfs directory (you’ve
installed CVMFS before), then you
should clear your CVMFS cache with,

sudo cvmfs_config wipecache

 
and remove all of the mount points with,

sudo rm -rf /cvmfs/* # Careful!

 
You may now re-install CVMFS.

Installing CVMFS. Go to
http://cernvm.cern.ch/portal/filesystem/downloads
to download the Mac OSX client of
CVMFS. Install it and follow any instruc-
tions that it gives, including installing
FUSE. Be sure to install a late version of
FUSE (the page that CVMFS may send

you to might be old - the correct page is
https://osxfuse.github.io/).

Once the installation is complete, You
create the configuration files by doing,

sudo cvmfs_config setup

 
Install mount point. You must now in-
stall the mount point with,

mkdir -p /cvmfs/gm2.opensciencegrid.org

 
Download configuration files. Down-
load the configuration files from here
(you should get a file called
cvmfs_mac_config_20140114.tgz). Put
it in the right place and then do

http://cernvm.cern.ch/portal/filesystem
http://cernvm.cern.ch/portal/filesystem
http://cernvm.cern.ch/portal/filesystem/downloads
http://cernvm.cern.ch/portal/filesystem/downloads
https://osxfuse.github.io
https://osxfuse.github.io
https://cdcvs.fnal.gov/redmine/attachments/download/14981/cvmfs_mac_config_20140114.tgz
https://cdcvs.fnal.gov/redmine/attachments/download/14981/cvmfs_mac_config_20140114.tgz

cd /etc/cvmfs

sudo tar xvzf /<YourDownloadPath>/cvmfs_mac_config_20140114.tgz

sudo cvmfs_config reload

 
Mount CVMFS. To start CVMFS, issue this command now and whenever you reboot your machine, (you may
want to put this in a script)

sudo mount -t cvmfs gm2.opensciencegrid.org /cvmfs/gm2.opensciencegrid.org

 
Stopping and restarting CVMS. You can stop CVMFS with this command,

sudo umount -f /cvmfs/gm2.opensciencegrid.org

 
To restart, issue the mount command above.

Problems. You may find that after changing networks or having the computer sleep for a period of time you will
get intermittent problems reading files in CVMFS (e.g. i/o errors). If this happens, simply restart CVMFS with
(combination of the lines above),

sudo umount -f /cvmfs/gm2.opensciencegrid.org

sudo mount -t cvmfs gm2.opensciencegrid.org /cvmfs/gm2.opensciencegrid.org 

7

8

1.2 HOW TO INSTALL XCODE

Xcode is freely available from the App Store.

Get Xcode from the Mac App store. It is
free. Open the App Store (Apple Menu >
App Store) and search for Xcode. It is a
big file (nearly 2.5 GB), so it will take a
long time to download and install. You
should install it to your machine’s main
Applications folder. Xcode was at ver-
sion 6.1.1 at the time this document was
written.

Once Xcode has installed, you must
check for the command line tools. Do,

ls /usr/include

 
You should see nearly 250 files. If you
see none or very few, then do from a ter-
minal,

xcode-select --install

Issuing that command will download and
install the command line tools and will
populate that and other directories with
the correct files.

You are now ready to code with Xcode.

The Instruments profiling tool is down-
loaded and installed with Xcode auto-
matically.

Running and Configuring
Xcode & Instruments

•What are Xcode and Instruments

•How to launch Xcode

•Configuring Xcode for your development area

•How to launch Instruments
2

10

2.1 WHAT ARE XCODE AND INSTRUMENTS?

Xcode is an Integrated Development Environment (IDE), a software application
providing comprehensive support for software development including source code
editing, code building, and debugging. Instruments is an application for profiling
software’s use of resources.

Apple writes many application programs
for their Mac computers as well as iOS
devices (iPhone & IPad). They have
made some of their development tools
available for general use. While our soft-
ware takes no advantage of the special
capabilities and libraries on the Mac and
does not run on iOS, we can neverthe-
less take advantage of the nice software
development tools. Some of the fea-
tures Xcode offers were detailed in the
Welcome section of this document. You
may find other information at the Xcode
webpage, but note that most of the mar-
keting materials focus on writing Mac/
iOS applications.

There are other IDEs out there, many of
which are compatible with the Mac as

well as Linux. Examples include Eclipse,
NetBeans, and IntelliJ Idea. All of these
focus on Java development, but have
features that work with C++. A new IDE
called CLion is meant for C++ work,
but is in an Early Access Build pro-
gram. Despite all of these options, I
have focused on Xcode as it seems, to
me, to be the easiest to start using
(only if you have a Mac, of course).

Instruments is an application that can
profile your program and show a time-
line of resource usages, including CPU
time, memory, i/o, etc. It is easy to use
and gives a huge amount information
that may not be easy to interpret. Some
scenarios are given in subsequent sec-
tions.

Instruments

ibooks:///#chapterguid(19E7E181-8184-405F-9A07-314FFC19BDBB)
ibooks:///#chapterguid(19E7E181-8184-405F-9A07-314FFC19BDBB)
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://eclipse.org/
https://eclipse.org/
https://netbeans.org/
https://netbeans.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/

11

2.2 HOW TO LAUNCH XCODE

You must run Xcode in our software environment by launching it from the command
line.

Once Xcode is installed, you will have
an icon in your machine’s Applications
directory. But, to run Xcode for g-2 code,
it must be running within our software en-
vironment so that it has access to our en-
vironment variables. Therefore, you
should not start Xcode by clicking on its
icon. You must instead start it from the
command line by following the instruc-
tions here.

Prepare the environment. Launch a ter-
minal window (I like iTerm2) and re-
establish a session in a development
area. For example, see step 1 on the
right. If you haven’t built the code before
or have zapped the build area, you
should run cmake from the command
line by following step 2.

Launch Xcode. Assuming you installed
Xcode in /Applications, follow step 3.

In your terminal screen, you will see messages from Xcode. These are benign, includ-
ing the ones that tell you to report Xcode bugs, and may be ignored.

source /cvmfs/gm2.opensciencegrid.org/gm2/prod/g-2/setup

cd /path/to/my/dev/area

source localProducts*/setup

source mrb s # Set up development environment

1

mrb b -C # Runs cmake2

/Applications/Xcode.app/Contents/MacOS/Xcode &3

http://iterm2.com/
http://iterm2.com/

12

2.3 CONFIGURING XCODE

Do these steps once for your development area.

There are several steps that are re-
quired to configure Xcode for your devel-
opment area. You only need to follow
these steps once for each development
area that you are using.

Create the Xcode project. Launch
Xcode (see section 2.2 for how). The
welcome screen should appear (see
right). If that doesn’t appear, then on the
menu bar choose Window > Welcome to
Xcode.

Click on Create a New Xcode project.

ibooks:///#chapterguid(F3159317-A9D0-484C-BEFF-DEE359112E48)
ibooks:///#chapterguid(F3159317-A9D0-484C-BEFF-DEE359112E48)

Choose the template. For the template,
choose OS X > Other and then External
Build System (as shown). Click Next.

13

Choose project options.
Now fill in the options sheet.
For the product name, it is a
good idea to use the same-
name as your development
area directory.

The organization name and
identifier don’t matter. Put in
anything you like, but your
name is probably best.

For the build tool, enter
“make” as shown.

Click Next.

14

Save the project. Now you must save
the project files somewhere. These files
are specially for Xcode and you should
not save them in your development area
nor put them in git.

I have a specific directory on my Mac
where I put all of my Xcode project files
called ~/Development/g-2/xcode. You
may want to do the same. Xcode will
automatically add a directory there
named by the product name for your pro-
ject.

Be sure the “Create Git repository”
check box is unchecked. You don’t need
a new git repository - your sources al-
ready have git repositories and Xcode
will use them.

Click on Create.

15

No figure necessary

Configure the project.The main project
screen will now appear. First, in the Ex-
ternal Build Tool Configuration section,
for the Directory enter ${MRB_BUILDDIR}
in the box. Because you started Xcode
from the command line with your devel-
opment environment set up, Xcode will
know about that environment variable.

Start the documentation target. Unfor-
tunately, an external build system pro-
ject will not activate Xcode’s nice source
code navigation system. To remedy this
situation, we will add a documentation
target. Start this process by clicking on
the + sign in the left corner underneath
Project and Targets.

16

The idea here is to create a fake li-
brary target so that Xcode will activate
its source code navigation features.
We won’t actually use the library target
for anything important.

Choose the target template. Under
OS X choose Framework & Library
then choose Library.

Click Next.

17

Choose target options. For the target
options, first input a product name. I
typically use the same name as the pro-
ject with “-docs” at the end.

The organization name and identifier
typically don’t mean anything, so just
put in your name.

For Framework, choose None (Plain C/
C++ Library).

For Type, choose Dynamic.

The Project should be automatically
filled in.

Click Finish.

18

Now, we have to tell Xcode where
header files for Art, Geant4, and other
packages live. I have a little script that
tries to make this easy.

Define the header search paths. You
should now be back to the main Xcode
screen with the target information dis-
played. Be sure that “All” and “Com-
bined” are selected as shown on the
right.

Now enter header in the search box.
You should see a section appear
called Search Paths and within that an
entry called Header Search Paths.

Double click on the value of the
Header Search Paths; that is double
click on the words /Application/...

19

When you double click on the value
of the Header Search Paths, a box
should appear.

Click on the “+” in the lower left cor-
ner.

In the new entry box, enter 
${MRB_SOURCE} and press enter.  

Click somewhere outside of the box
to close it.

Now, back in your terminal window
you used to start Xcode, enter the
command on the right.

Now return to Xcode. You should see
“No Editor” displayed on the screen.

20

$MRB_DIR/bin/xcodeIncs.sh /path/to/xcode/project

Example below  
 $MRB_DIR/bin/xcodeIncs.sh ~/Development/g-2/xcode/profile-sim 

Add sources to your project. The final step is to
add the source code to your project. Control-click
(right click) on the project name in the left hand bar
and choose Add Files to “<project name>”.

Or, you can also choose from the Menu bar, File >
Add Files to “<project name>”.

First (because it is easy to forget), check the box
next to your documentation target (as shown on the
right).

Now navigate to where your srcs directory lives and
select it.

In the Project Navigator pane (on the far left) a srcs
directory should have been added.

The activity area (center top) may say “Indexing”

Xcode configuration is now complete!

If you quit Xcode and start it again, you can get back
to your project by selecting it on the right side of the
welcome screen.

21

22

2.4 HOW TO LAUNCH INSTRUMENTS

Run Xcode first, then select Instruments

Running Instruments is easy once you
already have Xcode running. Follow the
instructions in Section 2.2 for launching
Xcode.

You may then launch Instruments from
the menu bar by choosing Xcode >
Open Developer Tool > Instruments, as
shown on the right.

Again, you should not start Instruments
by clicking on its icon. You need to start
it within Xcode so that it will be in the
same software environment as Xcode.

See later sections about how to run In-
struments.

ibooks:///#chapterguid(F3159317-A9D0-484C-BEFF-DEE359112E48)
ibooks:///#chapterguid(F3159317-A9D0-484C-BEFF-DEE359112E48)

Using Xcode

• Quick tour

• Navigating Source Code

• Search and replace

• Git Integration

• Build

3
• Debug

• More

24

3.1 QUICK TOUR
The picture at the right is a gen-
eral display from Xcode editing
source. Refer to the numbers for
explanations. Hovering the
mouse cursor over something
will often give you help on that
item.

1) Activity bar. This bar shows
any activity from Xcode (build-
ing, indexing, debugging)

2) Standard Editor. This is the
main editor window for source
code.

3) Jump bar. Clicking parts of
the jump bar allows you to
quickly navigate to different
parts of the code or other files.
You can filter by clicking and
then typing. Clicking The left
and right triangles allow you to
cycle backwards and forwards
through viewed code. The four
square thing to the left of the tri-
angles is very useful. It is a con-
text sensitive list of associated

files (e.g. the counterpart file, which is the
.h or .cc).

4) Navigator bar. Currently showing the pro-
ject navigator. Note the “M” indicates that a
file in that directory was modified and has
not been committed to git.

5) Utility bar. Currently showing the file in-
spector. I find this bar less useful.

6) Editor chooser. Brings up different
editors. The version editor (right most)
is very useful.

7) Bar chooser. Can make the naviga-
tor, debug, and utility bars disappear
and re-appear.

8) View restrictor. Restricts what you
see in the navigator view.

25

3.2 NAVIGATING SOURCE CODE

Xcode makes reading and exploring code very easy

Here are some tips for navigating in
Xcode.

• ⌘Click (click while holding command
key) on an include file, a class name,
or an object name will take you to the
source for that include or class/object.
Option-⌘Click will open an “assistant”
editor instead of changing the stan-
dard editor. This feature is one of the
best in Xcode.

• The assistant editor is an editor win-
dow that is associated with the stan-
dard editor and reacts to what you do
in the standard editor. You can use the
jump bar to configure the assistant edi-
tor. For example, choosing “counter-
part” will show the .h or .cc file that cor-
responds to the file in the standard edi-

tor. You can have as many assistant
editors as you want. You can configure
where they initially appear in View >
Assistant Editor. Assistant editors are
very useful once you figure out how to
use them (and are an unusual feature
not found in other IDEs). There are
also nice keyboard short cuts. A handy
one is ⌘Return, which will close all of
the assistant editors you have open
leaving you with only the standard edi-
tor.

• To edit multiple files in tabs, you use
⌘T to open a new tab. The new tab
will initially be identical to what you just
had open. Use ⌘{ and ⌘} to cycle
through tabs.

• Play with the version editor to view dif-
ferent git versions of the source files
and their differences. This feature is
extremely useful.

• Right (or Control)-Click on text in an
editor brings up a wealth of actions.
The Show Blame for Line will show
you who entered/last changed that line
and the git commit.

• Remember to use the jump bar to
quickly move around the file.

26

3.3 SEARCH AND REPLACE

Searching and replacing code at the file or project level is easy

One of more important features of an
IDE is finding text as well as searching
and replacing. Xcode is extremely capa-
ble in this area

Many actions are available from the
Find menu. To do file level find/search &
replace do ⌘F.

Project level find/search & replace is es-
pecially useful. To activate the Find Navi-
gator select the search icon on top of
the navigator bar (as shown selected on
top in the figure on the right).

You may now enter the search string in
the text box. Clicking on Find, Text, Con-
taining, and the search icon in the bar
brings up a wealth of options (click Find
to see replace actions). There are also

more options below the text bar, includ-
ing if you want to restrict the search to
certain files.

The results are shown below. Clicking
on a result will bring it up in the standard
editor (option-click will bring up an assis-
tant editor).

You can remove results by clicking on
them and pressing Delete. Doing so
does not change any file, it simply re-
moves the result from the Find Naviga-
tor.

Many search and replace options and
actions are available here.

27

3.4 GIT INTEGRATION

Xcode has extensive integration with git

Git indicators. The Project Navigator
bar gives several clues to the state of
files in git.

1) Files that have been modified, but un-
saved, have their file icon in grey.

2) Files that have a git status are indi-
cated by a grey letter in the right side
of the bar.

• M file was modified

• A file was added

• D file was deleted

Such files have not been committed yet.

Checking in commits. When you have
modified files, you may commit them to
your local git repository. You can commit
individual files by Right (or Control)-
Click on the file in the Navigator bar.
You can commit all of the modified files
by choosing from the menu Source Con-
trol > Commit... A sheet similar to the
one on the right will appear.

On the commit sheet you will see, on
the left, a navigator bar showing the
changed files to be committed. Clicking
on the checkbox will add/remove that
file from the commit. The main part of
the sheet shows a version editor where
you can see the changes you made for
a particular file. You may remove particu-
lar changes from the commit by clicking

on the center-column indicator. Scroll up
and down to see all of the changes.

You type your commit message in the
block on the bottom of the sheet.

If you want to push to remote reposito-
ries (Redmine) at the same time as com-
mitting, check the Push to remote box in

the lower left. Be sure you have an ac-
tive kerberos ticket to push.

Explore the Source Control menu for
many more actions and options.

Merging is particularly useful in Xcode,
because a very helpful merge conflict
editor will open if necessary.

28

29

3.5 BUILD

Xcode’s build error display is very useful

If you have configured Xcode correctly,
you can build the code by clicking on the
big right triangle in the upper left hand
corner (1) in the figure above.

To see the build log, click on the Log
Navigator (2).

The build log shows a subset of the log
output and is not particularly useful. To
see the entire log, select the little icon
as shown in (3) on the same line with
“Run external build tool”. Look at the
green shaded output.

You will also note that the Action Bar in-
dicates that the build is in progress.

Errors will be indicated in many
places, including as an icon the
Action Bar. Clicking on that
icon will take you to the Issue
Navigator. Clicking on an issue
will show you the error in the
source code (see right). This
feature is extremely useful.

If the build is successful, you
can run gm2 from the com-
mand line (not from within
Xcode).

30

3.6 DEBUG

Debugging within Xcode can show you how your code works

Some notes. Debugging our g-2 code
on a Mac has limitations. Apple does not
use gdb for debugging. Rather, it uses
LLDB, which is tied to the LLVM com-
piler (we use gcc instead). Many things
work, but somethings don’t and LLDB
can crash if you view certain objects.
Simply restart Xcode and you’ll be run-
ning again.

Another limitation is that on the Mac,
connections from code to the source are
not stored in libraries. Therefore, if you
want to debug into source code, you
must build that code yourself. Typically,
this is not a problem as Art and Geant
code are complicated and do not lend
themselves for easy debugging. If you
are debugging and see assembly code

instead of C++ source, that is because
the connection to the source is not avail-
able. All code you build yourself is de-
buggable.

Lastly, debugging code built in a prof re-
lease will work, but stepping through
code will seemingly be crazy as the cur-
rent line pointer will jump around. Fur-
thermore, break points that you set may
never get hit. This problem is because
prof builds are optimized. Code you see
in the source file may have been altered
or removed by the compiler optimizer.

If you are exploring the operation of
some code, you should use a debug
build (no optimization).

To set breakpoints you can sim-
ply click on a line number in the
source (2).

You can also click on the Break-
point Navigator (1) and see a
list of set breakpoints.

You can right (or Control-) click
on the break point and edit it.

At the bottom of the navigator
you can also set special break-
points, such as exception break-
points. Those are especially use-
ful if Art or your code is throwing
an exception.

31

To run the debugger, you must attach to
the running process. You can set up
Xcode by choosing from the menu De-
bug > Attach to Process > By Process
Identifier (PID) or Name...

Enter gm2 for the process name. Then
click on Attach (Xcode will wait for the
process to start).

The first time you try to attach, Xcode
may suspend itself. Go to the terminal
and do bg to resume Xcode in the back-
ground.

You should see Waiting for gm2 to
Launch in the activity bar.

Then start gm2 in the terminal. For ex-
ample,

gm2 -c makeTracksFromOldHits.fcl

32

The debugging screen is shown here.

You can advance through the program
by continuing (1), stepping over func-
tions (2), stepping into functions (3),
and stepping out of the current func-
tion (4).

You can view current variables to-
wards the bottom of the window.

You can also hover the mouse over
objects and variables in the source
code to see values.

If you see assembly code instead of
source code, then you are looking at
code that you didn’t build.

33

Using Instruments

•Configuring Instruments

•Time Profiler

•Memory Allocation and Leak Profiler 4

35

4.1 CONFIGURING INSTRUMENTS

Configure Instruments to run “gm2”

See section 2.4 for how to launch Instruments.

When it starts up, you will see a screen like the one on the up-
per right, allowing you to select a profiling template for an ex-
ecutable.

Your screen will have some default executable. Click on it to
bring up the chooser, select your Mac laptop as the device,
and select Choose Target...

You now need the location of the gm2 executable. In the ter-
minal where you ran Xcode, do

which gm2

 
Copy the results to the clipboard with ⌘C.Then go back to
the instruments window and press Shift-⌘G to open a path
box. Paste the results with ⌘V and press Go. (Note this path
box works for any file open window in any Mac application).

Next, choose the the gm2 executable.

See the next page.

ibooks:///#chapterguid(E009760F-F66E-4D4B-893A-D4F50D705DA4)
ibooks:///#chapterguid(E009760F-F66E-4D4B-893A-D4F50D705DA4)

Now you need to fill in the Arguments (1). Type in
the arguments you want to pass to gm2. Let’s run
2000 events through one of the standard fcl files in
gm2analyses.

-n 2000 -c muongas_and_caloDiagnostic.fcl

 
You also must fill in the Working Directory (2). If you
want to use your build area, then go to your terminal
window and do

echo $MRB_BUILDDIR  
 
Copy the results to the clipboard with ⌘C.Then go
back to the instruments window, click in the Working
Directory box and paste the results with ⌘V (unlike
in Xcode, environment variables do not seem to
work here).

Press Choose.

36

37

4.2 TIME PROFILER

The time profiler shows you where your program is spending its time.

Choose the Time Profiler from the tem-
plate chooser.

Run the profiler by clicking the red re-
cord button. The example given here
takes about 40 seconds to run.

The result is shown on the right.

The top part shows the CPU usage over
the course of the application.

The bottom shows the detail of the exe-
cution.

You can restrict what is seen in the de-
tail by clicking and dragging over the
timeline.

The Time Profiler works as follows:

When the executable is run within Instru-
ments, the Stack Trace is sampled every
millisecond.

The Stack Trace is the routine the pro-
gram is running at a given time along
with the traceback (what functions were
called to get to that routine).

The samples are collected and dis-
played in the detail area of Instruments.

The Call Tree shows what functions
were active when the samples were
taken. Functions that appear often are
interpreted to take some fraction of exe-
cution time.

For example, if a function is listed in
1000 samples, then one can interpret
that the cpu is dealing with the function
for 1 second of CPU time (if each sam-
ple is 1 ms).

This sampling yields some limitations. If
a routine is extremely fast, then it may
not show up in the profile. This is ok,
since one is worried about routines
where the CPU is spending a lot of time.

It is often not possible for Instruments to
determine the entire stack trace for
every sample, so you may seen trun-
cated traces.

Let’s go though the detail in this exam-
ple to learn some things about the g-2
simulation.

38

In this display, the Running Time shows
the total time the CPU is in that routine
or a function the listed routine calls.

Self shows how many samples that
were taken where the routine listed was
at the bottom of the stack (the routine
the CPU was actually running).

The symbols are not a stack trace. It is
a list of routines found in the stack

traces. If you select one, on the right
side you can see the stack trace that ap-
peared in the most samples. The bottom
of the trace is what the CPU was run-
ning when the sample was taken. Mov-
ing up the trace, you see the routines
that were called to lead to that function.
This particular trace is truncated.

Let’s look at the detail window. One
thing that stands out is that

G4VSensitiveDetector::Hit appears
in ~30% of the samples. This doesn’t
mean that the CPU was running that par-
ticular routine 30% of the time. Instead it
means that in 30% of the samples, the
routine at the bottom of the stack trace
(the one what was running) was called
by this particular routine (with perhaps
many routines in between). We will dive
into this situation on the next page.

39

Opening the exposure triangles, you see
more routines. These are the routines
that are called by the routine at the
higher level (outdented). Again, this is
not an explicit stack trace. It is a list of
routines at the next level of depth in the
stack trace with their timing information.

What we see is that 30% of the execu-
tion time is in the StrawHit constructor.
And that is because the constructor calls

the StrawTrackerGeometry constructor.
Let’s look at this code to see what is go-
ing on. Double clicking on the high-
lighted line gives the source code.

See next page.

40

Here we see that for every tracker hit,
the StrawTrackerGeometry is retrieved.
And that appears to be an expensive op-
eration, taking up nearly all of the CPU
time for this routine.

A good solution would be to cache the
geometry somewhere. Doing so could
potentially save a large amount of execu-
tion time.

41

42

4.3 MEMORY ALLOCATION AND LEAK PROFILING

You can watch memory usage over time.

You can start by choosing the Alloca-
tions and Leak profilers from the begin-
ning template screen. Or, if you are al-
ready profiling (e.g. with the Time Pro-
filer), delete the current instrument (In-
strument > Delete).

Then press the + sign near the top of
the window. Choose the Allocations and
Leak profilers.

The Allocations profiler works by instru-
menting all calls to allocate and free
memory. Doing so adds a significant
amount of time to the execution of the
program. Following our example, let’s
change the arguments to do 200 events
instead of 2000. You can do so by choos-
ing and then editing the target.

In the Allocations profiler, you want to
watch for a consistent rise in memory
over time. Such a rise could indicate mis-
takes in memory management.

The Leak profiler indicates memory that
is no longer accessible. This happens if
memory is allocated and referred to by a
pointer, but the pointer goes out of
scope or is deleted. That allocated mem-
ory can no longer be accessed and is a
memory leak.

This display shows a list of all memory
allocations. For some, Instruments can
figure out the object type. It can’t for oth-
ers and they are shown as Malloc.

Memory peaks at about 85 MB and then
drops at the end to about 45 MB.

Though it is not easy, one can trace
when memory is created and destroyed
by the program.

Two periods of leaks are seen. Select
the Leak profiler to learn more about the
leaks.

43

